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ABSTR�ACT
We study a new countermeasure to the well known
threat of node capture in sensor networks. A node
capture occurs if an adversary completely takes over
a sensor node and uses it to spy on the data which
is stored and processed within the sensor network. In
case this data has some value it needs to be protected
from unauthorized access through a security mecha-
nism. Merely encrypting the data is sufficient to pro-
tect its contents from eavesdroppers but not from node
capture. We present a new approach, namely Evasive
Data Storage, that intends to improve security fea-
tures at the data storage level. The idea of Evasive
Data Storage is that data moves around the sensor
network instead of remaining at a fixed location. In
this way, an adversary, who has once (through node
capture) had access to the data stored at some par-
ticular node, must compromise more sensors in order
to maintain his illegitimate access to the sensor data.
Through simulation we show that the new notion of
Evasive Data Storage effectively decreases the prob-
ability that the adversary finds the data again even
though he knew where the data once resided. Hence
Evasive Data Storage offers an interesting possibility
to secure data in sensor networks.
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1 Introduction

Sensor networks offer a rich and challenging environ-
ment for the topic of data storage to be explored from
different perspectives than it is done in conventional
systems [8, 7]. The very idea that hostile adversaries
can monitor traffic, access nodes, and thus gain ac-
cess to data calls out for new solutions to protect the
confidentiality of data in sensor networks.

Assuming that some precious data is stored at
a subset of nodes in the sensor network, a security
mechanism must ensure that an adversary cannot eas-
ily identify these nodes. The usual methods to achieve
this are called anti-traffic analysis and use random net-
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work traffic to disguise the critical traffic which could
be used to find the precious data. This idea is well-
known from other areas of communications security
and has already been employed in sensor networks [2].

Anti-traffic analysis is of no use if the adversary
already has identified a critical node and has com-
pletely taken over control of that node. This action is
commonly called node capture and is one of the most
challenging adversarial behaviors which are possible
in sensor networks. If a critical node is captured, the
adversary is able to always access the data of the sen-
sor network, no matter how much anti-traffic analysis
overhead is employed.

In the presence of node captures, data cannot be
sufficiently protected with the established conventional
storage algorithms, because methods like Data Centric
Storage [8] or Local Storage (each node stores the data
generated by it) dictate that data is stored at a certain
node and remains there for the lifetime of the network.
We therefore propose the idea to replace the rigid dic-
tation for data to remain at fixed locations to a more
lax approach to storage that allows data to be wan-
dering in the network. Allowing for such movement,
we obviously can address the problem raised above,
as malicious users cannot rely on the fact that they
will find updated data at the same locations where it
used to be previously. This shift in the data storage
paradigm for sensor networks is the core of the Eva-
sive Data Storage notion and the respective algorithms
that implement the idea. The effectiveness of Evasive
Data Storage depends on many parameters, for exam-
ple the evasion strategy which defines the locations to
which data may evade in the network.

Apart from introducing the notion of Evasive
Data Storage we evaluate the effectiveness of different
evasion techniques (which are encoded in a so-called
choice function) for a simple Evasive Data Storage al-
gorithm. By using simulations, we identify a choice
function that makes it very hard to re-identify a crit-
ical node in the network after node capture. With
the addition of anti-traffic analysis techniques as a se-
curity enhancing technique, we therefore provide an
effective means to alleviate the severity of the node
capture problem. These as well as more complex vari-
ants of Evasive Data Storage and anti-traffic analysis
techniques are documented in a more detailed fashion
in [1].

The paper is structured as follows: In Section 2
we introduce the model used for the algorithms and
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the simulations. In Section 3 we present the simple
Evasive Data Storage algorithms and the simulation
results of the different choice functions. We conclude
in Section 4.

2 Definitions and Model

2.1 Network Model

We consider a network consisting of n nodes, where
we distinguish between h hot nodes that store data at
a certain instance, and (n − h) cold nodes that never
store data.

Most algorithms in sensor networks are presented
from the point of view of a single sensor node, mostly
denoted as s. This node can only interact directly
with nodes in its vicinity V (s), where one such node
is referred to as a vicinity node v ∈ V (s). The vicin-
ity of a node is mainly defined by the strength of its
wireless communication device it disposes of. We as-
sume that communication links are encrypted. Stan-
dard low-cost mechanisms exist to establish pairwise
encrypted channels in sensor networks [6, 9, 3, 5].

2.2 Communication Primitives

Nodes communicate using local broadcast, i.e. a node s
can communicate with all nodes v ∈ V (s) with a sin-
gle message in one communication step. Local broad-
cast is assumed to be probabilistic, i.e. the probability
that a node in V (s) receives the message is plb. This
probability also influences other types of communica-
tion which are built on top of local broadcast, includ-
ing point-to-point message passing and global broadcast
primitives.

2.3 Adversary Model

We define several different models for the adversary
that reflect realistic possibilities. An adversary A can
exhibit two basic skills, namely traffic analysis and in-
tervention skills. The former can take the levels blind,
local and global, whereas the latter is subdivided into
passive and active. The traffic analysis levels merely
describe the region an adversary can observe, ren-
dering a blind adversary inapt to perform any traffic
analysis, allowing a local adversary to observe a frac-
tion of the network and ascribing the global adversary
observability of the complete network. Although the
local adversary might call for a more detailed defini-
tion of the boundaries imposed on the local region he
can observe, for our purposes it suffices to state that he
cannot track traffic in the complete network (in most
cases it can be assumed that he can observe traffic gen-
erated by nodes that are in his vicinity which is only
little larger than that of an average sensor node).

In the case of intervention, the levels describe how
much power an adversary has to influence the behavior
of sensor nodes: the passive case allows an adversary
only to extract data from a node, whereas the active
case allows for complete take over of the node includ-
ing the scenario where the node is forced to exhibit
arbitrary behavior.

Those two basic skills, traffic analysis and inter-
vention, are orthogonal and define a lattice of differ-
ent types of adversaries. An adversary will always
be specified as a pair of skills, where the first com-
ponent indicates the traffic analysis level and the sec-
ond the intervention level. For instance, an adversary
A(local, passive) can observe traffic only in his vicin-
ity and when accessing a node only data extraction
is an option for him, disallowing him to influence the
behavior of the node.

In this paper we want to stress the case of an pas-
sive adversary that tries to access specific data in the
network, with non evasive storage methods such an ad-
versary can access data easier than in the evasive case,
especially when he is looking for updates of data he
already accessed. This property should become clear
from the following description of the notion.

3 Evasive Data Storage

We now explain the new notion of Evasive Data Stor-
age. The goal of this new paradigm is to improve se-
curity properties of data given that a hostile entity is
assumed to be located in the network’s environment.
Obviously, in order to increase security a price has to
be paid and for the case of Evasive Data Storage better
security is achieved through a certain message over-
head that is imposed on the storage process. This also
stresses the goal that this notion intends to achieve:
providing protection against unauthorized data access
with a high probability. Hence, we will not consider
Denial of Service attacks that active adversaries might
engage in, although we will comment on some mali-
cious activities which are crucial to the effectiveness of
Evasive Data Storage at the end of this paper.

3.1 Simple Algorithm

A simple algorithm that implements the basic notion
of Evasive Data Storage makes a hot node s, that
received or generated some data D, actively choose
which node v ∈ V (s) should become the new harbor
for D. This view of evasive storage opposes the one
where the node s solely initiates the displacement of
D and delegates the actual decision to its neighboring
nodes. Obviously, the latter view of evasive storage
calls for consensus among the nodes, and also raises
security issues regarding the transmission of data. The
former view, the one we have decided to use for our
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implementations of Evasive Data Storage, makes s the
decision maker and does not lead to the problems just
mentioned. To convey the simple algorithm in more
detail, the following steps are performed by a hot node
s:

• s sends an evasion request to all v ∈ V (s)

• all v ∈ V (s) respond indicating participation

• s receives responds and invokes the choice func-
tion Choice on the nodes that indicated willing-
ness to participate

• Choice returns a single node, the chosen node c

• s transmits the data D to c

• c acknowledges reception

This simple algorithm can be used to displace
data items in the network. This has to be put
into context of storage: the assumption made is that
data starts wandering directly after being generated,
thus it is never assigned any particular node nor are
means provided to inform other entities of its exis-
tence. Hence, to complete the approach to form a data
storage mechanism, a short discussion of data retrieval
is necessary. As there is no knowledge available con-
cerning the whereabouts of data in the network at the
time a legitimate user queries the network for data, the
most straightforward approach for retrieval is flooding.
Doing so, the legitimate user can cause a flooding of
the network with a request for data and therefore even-
tually find the data wandering in the network.

Using the simple algorithm above, we can lower
the success probability of an adversary A that tries
to access a hot node periodically for updated data
items. In conventional storage his chances are (almost
always) equal to 1.0, whereas in Evasive Data Storage
his chances are substantially less than 1.0. The exact
estimation of the adversary’s chances depend on the
employed choice function Choice.

3.2 Choice Functions

The core of the Evasive Data Storage notion is the pa-
rameter Choice, i.e. the concept of a Choice Function.
We propose four fundamental choice functions and a
specific combination technique, that naturally allows
to obtain a myriad of choice functions. The four choice
functions are given from the perspective of executing
node s:

• UVicinity: choose a ∈ V (s) with uniform proba-
bility.

• UFurthestk: choose a ∈ V (s) with uniform proba-
bility among k furthest nodes from s.

• GNodeFurthest: choose a ∈ V (s) that is furthest
from the generating node, which is assumed to be
provided by the respective data.

• DirectionV: use an initial direction vector or
change the current one with probability pc to
choose a node in V (s) that is closest to the direc-
tion vector. The initial direction vector is chosen
randomly and the probability that the direction
changes is usually small (for the simulations we
used pc = 0.005).

Of course, there are even further choice functions that
can be used in different contexts, but in scope of
this work we limit our attention to those just given
and a simple combination technique which resembles
concatenation: given two choice functions Choice1

and Choice2, a new choice function Choice∗ =
(Choice1, e, Choice2) results from making the first e
evasion steps using Choice1 and thereafter using the
Choice2 indefinitely. Hence, the new choice function
Choice∗ can be seen as the concatenation of two choice
functions, where the exact moment of changing from
one function to the other is parameterized by e.

3.3 Simulations

In order to estimate the security gain of Evasive Data
Storage but also to stress the importance of the Choice
Functions, simulations are employed. To do so two
systems were used. The first, addressing the choice
functions specifically, is a custom tailored environment
written from scratch, the second used a publicly avail-
able discrete event simulator [4] in which all algorithms
have been implemented in sufficient detail. The main
objective to achieve here is to show that an adversary
A needs to consider more nodes after having found a
hot node and wanting to access the node for updated
data compared to the conventional storage case. In
the conventional storage case the same node will con-
tain the data at any time during the network’s life
time. In Evasive Data Storage, many other nodes can
be the new hot nodes, and the subsequent discussion
shows that using the right choice function can force A
to consider all nodes in the network (or a certain re-
gion) compared to only a single one in the conventional
storage case.

To investigate the Evasive Data Storage a net-
work of 10000 nodes is set up and data is evaded for
a certain number e of evasive steps starting at node
at location (0, 0) using the Evasive Data Storage algo-
rithm discussed above. In this algorithm, any partic-
ular choice function essentially leads to a probability
distribution for the location of the data that wanders
the network starting at (0, 0). The figures which we
will look at depict the probability that a node will be-
come hot after e many displacements, which we can
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also postulate to be equivalent to the success proba-
bility an adversary A has to pick a hot node know-
ing which choice function the storage mechanism uses.
A then can be kept most effectively from accessing a
hot node if the resulting distribution is uniform, i.e.,
all nodes have equal probability to become hot. We
will show with the distributions yielded by the sim-
ulations that there actually is such a choice function
that quickly yields such a desired uniform distribution.
Note that the figures depicting the probability distrib-
utions for the choice functions have different z-ranges,
which is necessary to guarantee interpretable images.
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Figure 1. Evasive Data Storage with UVicinity
after 6 evasive steps.
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Figure 2. Evasive Data Storage with
UFurthestk after 6 evasive steps and k = 2.

Figure 1 depicts the probability distribution for
the UVicinity choice function after e = 6 steps. Ob-
viously, the probability for nodes to be hot after that
amount of steps is quite high for nodes very close of
the initial hot node located at (0, 0). Thus, the A can
easily obtain data by checking nodes close to (0, 0).
Similarly, the UFurthestk exhibits a very similar distri-
bution, though the peek around (0, 0) is not as pointed
as in the UVicinity case.

The remaining two choice functions GNodeFur-
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Figure 3. Evasive Data Storage with GNode-
Furthest after 6 evasive steps.
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Figure 4. Evasive Data Storage with Direc-
tionV after 6 evasive steps.

thest and DirectionV are depicted in Figures 3 and
4 respectively. Here we observe that the former ex-
hibits a form similar to a ring, see Figure 3, that prop-
agates through the network centered at the original
node, which is quite reasonable as always nodes that
are furthest from position (0, 0) are chosen. This might
be an interesting property, however making e large
enough the hot nodes will concentrate at the points
furthest from the initial hot node, which can be ex-
ploited by A, if he knows which node was the initial
one and has good knowledge of the network’s topol-
ogy. The DirectionV probability distribution of Figure
4 shows a quite irregular structure, however with sev-
eral unwanted peeks, which can be ascribed to the used
(pseudo) random number generator. Otherwise, the
DirectionV has the closest resemblance of the four ba-
sic choice functions to the desired uniform probability
distribution. Unfortunately, the long term behavior,
i.e. the distribution after a large number of e, is not
as pleasant [1].

Overall, we have seen that none of the four basic
choice functions does exhibit the wanted uniform dis-
tribution, and need to look for other functions that do
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Figure 5. Evasive Data Storage with UVicinity
after 18 evasive steps.
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Figure 6. Evasive Data Storage with
(DirectionV, e

2 ,UFurthestk) for e = 18 and k =
2.

offer such a property. Thus, we look at choice func-
tions obtained from the combination mechanism dis-
cussed in the respective section above. To do so, we
simulate the UVicinity function for 18 evasion steps,
whose distribution hardly differs from the one obtained
for 6 steps (compare 1 and 5), and the (DirectionV, e

2 ,
UFurthestk) for the same number of steps. The respec-
tive result can be seen in Figure 6, which certainly
shows that the probability distribution is the antici-
pated uniform one. Comparing this distribution with
the UVicinity’s one, it is clear that we can force an ad-
versary to consider all instead of few nodes, when we
employ the right choice function given the approximate
size of the network. Thus we have proof indicating
that choosing the right combined choice function can
increase the success of data protection in the network,
making the right choice function the core parameter for
successful protection of data assuming Evasive Data
Storage.

3.4 Extensions

Taking a look at the simple algorithm presented above
for the Evasive Data Storage, it becomes clear that
during data query the localization of data wandering
the network can pose a problem. The simplest solu-
tion that we can provide is to flood the network, hence
surely reaching every hot node storing data at that in-
stance. A more elaborate scheme is to keep the base
stations informed about the location of data wander-
ing, thus avoiding the need for flooding. Either way,
as long as the whole network is allowed to be used for
wandering of data, the query cost will be high. Hence,
we propose an easy solution to the problem, which
bounds the region where data can wander to so called
hot groups. Those groups consist of nodes that commit
to store data evasively and only displace data to nodes
belonging to the same group. With such a scheme, we
reduce the query costs, as the number of nodes that
need to be contacted is lowered, but still retain the
advantages of Evasive Data Storage as long as the hot
groups are not made ridiculously small. This notion is
referred to as Location Bound Evasive Data Storage.

As another possible extension concerns the time
data remains at a node. Introducing the Time Con-
straint Evasive Data Storage algorithm, we do allow
for more control over actual time data resides at a hot
node, before being considered for evasion. In the sim-
ple algorithm this is supposed to be some random time
interval, but with the Time Constraint Evasive Data
Storage algorithm a bound on the maximal time is im-
posed, thus making it possible to let data only remain
a specified amount of time at a hot node.

All of the extensions to the simple algorithm for
Evasive Data Storage are presented and discussed in
more detail in the full version of this work [1].

At this point we want to address an important
issue that is of significance to the whole idea of eva-
sive storage regarding its security properties. Looking
at an active adversary A that can takeover nodes in
the network, it should be clear that he can strategi-
cally infect certain nodes with malicious code making
them wait for data to be evaded into them. This simple
setup renders the effectiveness of Evasive Data Storage
to address data security very questionable. We inves-
tigated this issue by using simulations and confirmed
that the larger e becomes, the higher the success prob-
ability of A collecting data through his setup malicious
nodes. However, we have also showed in those simula-
tions that a simple enhancement, namely Data Split-
ting, solves this deficiency of Evasive Data Storage in
case of an active A. The basic notion behind Data
Splitting is to split data items into splints making it
more difficult for A to successfully obtain data. This,
of course, works at the expense of additional communi-
cation costs. The effectiveness is shown in scope of [1],
and and it can be argued that keeping the frequency
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of evasions low, the impact on the energy consumption
can be kept at an acceptable level.

4 Conclusion

In this paper we introduced the notion of Evasive Data
Storage and argued that it is an interesting method
to combat adversaries that are able to perform node
capture. Assuming an adversary has once identified a
hot node, he cannot easily access that node’s data at a
later point in time with very high probability. This is
in contrast to conventional storage mechanisms used
today.

Using security enhancing techniques in sensor
networks will most certainly in all cases be achieved
through increased energy consumption, Evasive Data
Storage is no exception to that. We can argue that
there is a tradeoff between security and energy that
in case of Evasive Data Storage demands for a very
diligent choice of the available parameters. This ad-
justment is especially important when extension to the
basic algorithm are considered too.
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